
HPC Performance Profiling using Intel VTune
Amplifier XE

Thanh Phung, SSG/DPD/TCAR, thanh.phung@intel.com
Dmitry Prohorov, VTune HPC Lead, dmitry.prohorov@intel.com

Ø Intel	Parallel	Studio	XE	–	An	Introduc4on	
Ø VTune	Amplifier	XE:	2016	U4,	2017	U1	and	U2	

§  Analysis	Configura4on	and	Workflow	

§  VTune	Performance	Metrics:		
v Memory	Access	analysis	
v Micro-arch	analysis	with	General	Explora4on	
v Advanced	Hotspots	
v Performance	Overview	with	HPC	Performance	Characteriza4on	

2

Agenda

Intel	Parallel	Studio	XE:	An	Introduc4on	
	

4

Intel® Parallel Studio XE (Linux, Window, MacOS)

Intel® C/C++ & Fortran Compilers

Intel® Math Kernel Library
Optimized Routines for Science, Engineering & Financial

Intel® Data Analytics Acceleration Library
Optimized for Data Analytics & Machine Learning

Intel® MPI Library

Intel® Threading Building Blocks
Task Based Parallel C++ Template Library

Intel® Integrated Performance Primitives
Image, Signal & Compression Routines

Intel® VTune™ Amplifier
Performance Profiler

Intel® Advisor
Threading & Vectorization Architecture

Intel® Trace Analyzer & Collector
MPI Profiler

Intel® Inspector
Memory & Threading Checking

Pr
of

ili
ng

, A
na

ly
si

s
&

A

rc
hi

te
ct

ur
e

Pe
rf

or
m

an
ce

Li

br
ar

ie
s

C
lu

st
er

 T
oo

ls

Intel® Distribution for Python
Performance Scripting - Coming Soon – Q3’16

Op#mizing	Workload	Performance	-	It’s	an	itera#ve	process…	

Ignore if you
are not targeting

clusters.
Tune MPI

Optimize
Bandwidth Thread

Y

N

Y N

Y NVectorize

Cluster
Scalable

?

Memory

Bandwidth
Sensitive

?

Effective
threading

?

5

Intel	Parallel	Studio	XE:	A	complete	tool	suit	for	code	and	HW	performance	
characteriza#on	

Intel® Trace Analyzer
& Collector (ITAC)

Intel® MPI Snapshot
Intel® MPI Tuner

Intel®
VTune™ Amplifier

Intel®
Advisor

Intel®
VTune™ Amplifier

Tune MPI

Optimize
Bandwidth Thread

Y

N

Y N

Y NVectorize

Cluster
Scalable

?

Memory

Bandwidth
Sensitive

?

Effective
threading

?

6

Ø  VTune	on	KNL	works	with	SEP	driver	(recommended)	+	PIN	or	upon	perf	
•  Related	to:	Advanced	Hotspots,	Memory	Access,	General	Explora#on,	HPC	Performance	Characteriza#on,	

custom	event	analysis	

Ø  Perf-based	collec#on	limita#ons:	
•  Memory	Access	analysis	is	not	enabled	with	perf	

•  To	collect	General	Explora#on	increase	default	limit	of	opened	file	descriptors:	
In	/etc/security/limits.conf		increase	default	number	to	100	*	<number_of_logic_CPU_cores>:	

<user>	hard	nofile	<100	*	number_of_logic_CPU_cores>	
<user>	so_	nofile	<100	*	number_of_logic_CPU_cores>	

•  To	enabled	system	wide	collec#ons,	uncore	event	collec#ons		set:	
	> 	echo	0	>	/proc/sys/kernel/perf_event_paranoid		

Ø  Default	sampling	interval	on	KNL	is	10ms	

Ø  EMON	driver	for	counter	mode	
	

7

VTune:	System	Configura#on-	Prerequisites	for	HW	EBS	event	based	collec#ons	

VTune	Amplifier	XE:	Performance	Analyzer	
	

Ø  Use	VTune	Amplifier	XE	2017	U1	(2017	U2	will	be	available	in	WW12)	
Ø  Memory	Access	-	BW	traffic	and	memory	accesses		

§  Memory	hierarchy	and	high	BW	usage	(MCDRAM	Vs	DDR4)	
Ø  General	Explora4on	-	Micro-architectural	issues	

§  Explore	how	efficiently	your	code	passing	through	the	core	pipeline		
Ø  	Advanced	Hotspots	-	Algorithmic	tuning	opportuni4es	
Ø  HPC	Performance	Characteriza4on	

§  Scalability	aspects	for	OpenMP	and	hybrid	MPI+OpenMP	apps	
§  CPU	u#liza#on:	Serial	vs	Parallel	#me,	imbalance,	parallel	run#me	overhead	

cost,	parallel	loop	parameters	
§  Memory	access	efficiency	
§  FPU	u#liza#on	(upper	bound),	FLOPS	(upper	bound),	basic	loop	vectoriza#on	

info	

9

Overview:	Explore	Performance	on	Intel®	Xeon	and	Xeon	Phi™	Processor	

 <mpi_launcher> – n N <vtune_command_line> ./app_to_run

 srun –n 48 -N 16 amplxe-cl –collect advanced-hotspots –trace-mpi –r result_dir ./
my_mpi_app

 mpirun –n 48 -ppn 16 amplxe-cl –collect advanced-hotspots –r result_dir
 ./my_mpi_app

•  Add -trace-mpi option for VTune CLI to enable per-node result directories for non-Intel
MPIs

•  Works for software and Intel driver-based collectors

•  Superposition of application to launch and VTune command line for selective ranks to
reduce trace size

Example: profile rank 1 from 0-15:
 mpirun -n 1 <vtune_command_line> ./my_app : -n 14 ./my_app

10

Analysis	Configura#on	-	How	to	Run	VTune	CLI	on	MPI	Applica#ons	

1.  Create a VTune project

2.  Choose “Arbitrary Targets/Local”

3.  Set processor arch and OS

4.  Set application name and parameters

5.  Check “Use MPI Launcher”

 Provide the launcher name, number of ranks,
 ranks to profile, set result directory

11

Analysis	Configura#on	-	MPI	Profiling	Command	Line	Genera#on	from	GUI	

6.  Choose analysis type

7.  Generate command line

12

Analysis	Configura#on	-	MPI	Profiling	Command	Line	Genera#on	from	GUI	

Result	finaliza#on	and	viewing	on	KNL	target	might	be	slow	

Use	the	recommended	workflow:	

1.	Run	collec#on	on	KNL	deferring	finaliza#on	to	host:	
		amplxe-cl	–collect	memory-access	–no-auto-finalize	–r	<my_result_dir>		./my_app	

2.	Finalize	the	result	on	the	host	

•  Provide	search	directories	to	the	binaries	of	interest	for	resolving	with	–search-dir	op#on	

		amplxe-cl	–finalize	–r	<my_result_dir>	–search-dir	<my_binary_dir>	

3.	Generate	reports,	work	with	GUI	
		amplxe-cl	–report	hotspots	–r	<my_result_dir>	

	

13

Analysis	workflow	

VTune	Amplifier	XE:	Performance	Analyzer	–	
Memory	Access	

	

BT	Class	D	with	4	MPI	ranks	and	16	OMP	threads/rank:	memory	bandwidth	~100	GB/s	
with	DDR4	(le_)	and	~280	GB/s	with	MCDRAM	(right)	

~ 100 GB/s
with DDR4

~ 260 - 280 GB/s
with MCDRAM

BT	Class	D	with	4	MPI	ranks	and	16	OMP	threads/rank:	hotspots	from	run	on	DDR4	(le_)	
Versus	on	MCDRAM	(right)	

NPB-MZ	Class	D	run	#me	(sec)	comparison	on	DDR4	Vs.	MCDRAM	with	various	MPI	
ranks	X	OMP	threads	à	MCDRAM	speed	up	as	high	as	2.5	X	

Run Time (sec)

0

500

1000

1500

2000

2500

3000

2x32 2x32 Numa 4x16 4x16 Numa 8x8 8x8 Numa 16x4 16x4 Numa

Performance: DDR4 Vs MCDRAM

SP-MZ

BT-MZ

LU-MZ

Allocate HBW memory with Intel compiler directive fastmem and compile with –lmemkind that
can be download from http://memkind.github.io/memkind/ (for C codes: int hbw_malloc (size_t
size)

18

Intel Fortran
compiler directive

Example	of	run	script	with	VTune	command	line	amplxe-cl	

19

numactl to allocate all
memory to 4

MCDRAM memory
nodes 4-7

“watch –n 1 numstat –m” shows NUMA nodes with DDR4 (0-3) and MCDRAM (4-7)
showing only MCDRAM memory being allocated for LU Class D benchmark on KNL

MCDRAM DDR4

BW	usage	on	64	threads	(cores)	(Anima#on	code)	-	max	38	GB/s	with	DDR4	(le_)	and	
240	GBs	with	MCDRAM	(right)	

Max
MCDRAM BW
~ 240 GB/s

Max DDR4
BW ~ 38 GB/s

Large L2 cache misses
Large L2 cache misses

Top	memory	objects	and	large	L2	cache	misses	with	MCDRAM	as	HBM	

Performance	of	anima#on	code	with	DDR4	BW	(le_)	compared	to	MCDRAM	BW	(right)	

DDR4

MCDRAM

CPU Load

30 GB/s

220 GB/s 200 GB/s as cache

2 GB/s

Running on DDR4: numctl –m 0 Running on MCDRAM: numctl –m 1

Low CPU loads due to back-end bound

VTune	Amplifier	XE:	Performance	Analyzer	–	
General	Explora4on	

Micro-arch	analysis	with	General	Explora#on	
	

•  Execu#on	pipeline	slots	distribu#on	by	Re#ring,	
Front-End,	Back-End,	Bad	Specula#on	

•  Second	level	metrics	for	each	aspect	of	execu#on	
pipeline	to	understand	the	reason	of	stalls	

25

Performance	summary	and	top	OMP	regions	for	BT-MZ		

Hot	func#ons	and	OMP	hot	spots	with	most	run	#me	and	CPU	usage	profile	

CPU	load	on	all	64	cores	is	not	as	high	compared	to	that	of	40	
cores	à	an	indica4on	of	not	op4mal	data	load	balancing	for	
this	run	

CPU	performance	sta#s#cs	of	different	OMP	regions	for	BT-MZ	

Very	small	number	of	
instances	with	rela4vely	
large	4me	dura4on	

Summary	of	all	HW	events	collected	using	general-explora#on	for	BT-MZ	on	KNL:	AVX-512	
instruc#ons	are	included	in	UOPS_RETIRED_PACK.SIMD	and	UOPS_RETIRED_SCALAR_SIMD	or	~	60	
%+	off	all	UOPS_RETIRED_ALL	

Memory	Uops/
Insts	re4red	

SIMD/all	UOPS	

VTune	Amplifier	XE:	Performance	Analyzer	–	
Advanced	Hotspots	

Advanced-hotspot	performance	analysis-	summary	view	

31

Advanced-hotspot	performance	analysis	–	bouom	up	view	

32

VTune	Amplifier	XE:	Performance	Analyzer	–	
HPC	Performance	

HPC	Performance	Characteriza#on	Analysis	
Show	important	aspects	of	applica#on	performance	in	one	analysis	
§  Entry	point	to	assess	applica#on	efficiency	on	system	resources	u#liza#on	with	defini#on	of	the	

next	steps	to	inves#gate	pathologies	with	significant	performance	cost	

§  Monitor	how	code	changes	impact	important	different	performance	aspects	to	beuer	
understand	their	impact	on	elapsed	#me	

Customers	asking	
§  I	eliminated	imbalance	with	dynamic	scheduling	but	elapsed	#me	of	my	applica#on	became	

worse,	why?	

§  I	vectorized	the	code	but	don’t	have	much	benefit,	why?	

§  I’m	moving	from	pure	MPI	to	MPI	+	OpenMP	but	the	results	are	worse,	why?	

CPU utilization, memory efficiency and FPU utilization aspects are important for performance
study and correlated – let’s explore them in one view

> amplxe-cl –collect hpc-performance –data-limit=0 –r result_dir ./my_app

Performance	Aspects:	CPU	U#liza#on	(1/2)	

CPU Utilization
§  % of “Effective” CPU usage by the

application under profiling (threshold
90%)

–  Under assumption that the app should use all
available logical cores on a node

–  Subtracting spin/overhead time spent in MPI
and threading runtimes

Metrics in CPU utilization section
§  Average CPU usage

§  Intel OpenMP scalability metrics impacting
effective CPU utilization

§  CPU utilization histogram

•  MPI communication spinning metric for
MPICH-based MPIs (Intel MPI, CRAY
MPI, .._)

•  Difference in MPI communication spinning between
ranks can signal MPI imbalance

•  Showing OpenMP metrics and serial time
per process sorting by processes laying on
critical path of MPI execution

36

Performance	Aspects:	CPU	U#liza#on	(2/2)	-	Specifics	for	hybrid	MPI	+	OpenMP	apps	

Performance	Aspects:	Memory	Bound	

Memory	Bound	

§  %	of	poten4al	execu4on	pipeline	slots	lost	because	of	
fetching	memory	from	different	levels	of	hierarchy	
(threshold	20%)	

Metrics	in	Memory	Bound	sec#on	

§  Cache	bound	
§  DRAM	bound	

–  Issue	descrip#on	specifies	if	the	code	is	bandwidth	
or	latency	bound	with	proper	advice	of	how	to	fix	

–  NUMA:	%	of	remote	accesses	
–  Important	to	explore	if	the	code	is	bandwidth	

bound	

–  Bandwidth	u#liza#on	histogram	

NUMA Access

Performance	Aspects:	Memory	Bound	on	KNL	

Since no memory stall measurement on KNL “Memory
Bound” high level metric replaced with Backend-Bound
with second level based on misses and bandwidth
measurement from uncore events:

§  L2Hit Bound
–  Cost of L1 misses served in L2

§  L2 Miss Bound
–  Cost of L2 misses

§  DRAM Bandwidth Bound
–  % of app elapsed time consuming high

DRAM Bandwidth

§  MCDRAM Bandwidth Bound
–  % of app elapsed time consuming high

MCDRAM Bandwidth

§  Bandwidth utilization histogram

38

Performance	aspects:	FPU	U#liza#on	

FPU	u#liza#on	
§  %	of	FPU	load	(100%	-	FPU	is	fully	loaded,	threshold	50%)	
Metrics	in	FPU	u#liza#on	sec#on	

–  SP	FLOPs	per	Cycle	(vector	code	
genera#on	and	execu#on	efficiency)	

–  Vector	Capacity	Usage	and	FP	
Instruc#on	Mix,	FPArith/Mem	ra#os	
(vector	code	genera#on	efficiency)	

–  Top	5	loops/func#ons	by	FPU	usage	
–  Dynamically	generated	issue	descrip#ons	on	low	FPU	

usage	help	to	define	the	reason	and	next	steps:	
Non-vectorized,	vectorized	with	legacy	instruc#on	set,	
	memory	bound	limited	loops	not	benefi#ng	from	
	vectoriza#on	etc.	

These renewed FPU Utilization
metrics will be available in 2017

Update 2

No	FLOP	counters	on	KNL	to	calculate	FLOPS	and	FPU	U#liza#on	

Showing	SIMD	Instruc#ons	per	cycle	and	SIMD	Packed	vs	SIMD	Scalar	based	on	available	
HW	counters	+	Vector	instruc#on	set	per	loop	based	on	sta#c	analysis	

40

Performance aspects: FPU utilization on KNL

These renewed FPU Utilization
metrics will be available in 2017

Update 2

•  Generated	a_er	collec#on	is	done	or	with	“-R	summary”	op#on	of	amplxe-cl	

•  With	issue	descrip#ons	that	can	be	suppressed	by	“–report-knob	show-issues=false”	op#on	

41

HPC	Performance	Characteriza#on	–	Command	Line	Repor#ng	

Legal Disclaimer & Optimization Notice
INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR
OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO
LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS
INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.
Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software,
operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information
and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product
when combined with other products.

Copyright © 2015, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel logo are
trademarks of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors.
These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or
effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use
with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable
product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.

Notice revision #20110804

42

Back-up Slides

Ø  Core tuning:
§  Cache or vector friendly or both:

o  AVX-2 and AVX-512

o  Use best compiler options and check compiler report

mpiifort –g –O3 –xMIC-AVX512 –align array64byte … –qopt-report=5 –qopt-report-
phase=loop, vec, openmp…

§  Compilers directives and pragmas: SIMD, Alignment, …

§  OpenMP 4.0 with OMP SIMD directives/pragmas
§  NUMA: MCDRAM Vs DDR – Allocate memory for active arrays or use NUMA

command to use MCDRAM for better performance

44

Code tuning requirements: know your code, know the compiler and know
the platform microarchitecture

45

Package

Knights Landing (KML) Overview

36 Tiles w/ 72 new Silvermont-
based cores
4 Threads per core
2 Vector Processing Units per core
6 channels of DDR4 2400 up to
384GB
8 to16 GB of on-package MCDRAM
memory
36 lanes PCIE Gen 3. 4 lanes of DMI

MC
DRA

M

MC
DRA

M

MC
DRA

M

MC
DRA

M

MC
DRA

M

MC
DRA

M

MC
DRA

M

MC
DRA

M

OPIO OPIO OPIO OPIO

OPIO OPIO OPIO OPIO

DDR4 DDR4

PCIE
gen3

2 x16
1 x4 x4

DMI

36 Tiles
Tiles connected with Mesh

TILE:

45

2 VPU

Core

2 VPU

Core

1MB
L2

CHA

46

3 Memory Modes

Hybrid Model

DDR4 4 or 8 GB
MCDRAM

8 or 12GB
MCDRAM Split Options:

25/75% Or 50/50% DDR4

16GB
MCDRAM

DDR4

16GB
MCDRAM

Flat Models

P
hy

si
ca

l A
dd

re
ss

DDR4

16GB
MCDRAM

Cache Model
64B cache lines

Direct mapped

•  Mode selected at boot time
•  MCDRAM-Cache covers all HBM

46

Ø Scalability:
§  OMP

o  Load balance over all threads
o  Private Vs shared data
o  Synchronization
o  Lock, wait and spinning Vs doing work
o  SIMD directives

§  MPI
o  Timing cost due to communication Vs computing
o  Block Vs non-blocking message types
o  Global synchronizations
o  All-to-all communication

47

Code	tuning	requirements:	Parallel	Scalability	with	MPI,	OMP,	Hybrid	MPI+OMP	

